APPENDIX C IDENTIFICATION OF VARIABLES

IDENTIFICATION OF VARIABLES

Inactivation rate coefficient = a $\alpha =$ Coefficient of absorption Medium absorbance A = Inactivation rate function **b** = c = Particulate density coefficient Concentration C = **d** = Distance Dimensionless dispersion number $d_n =$ $d_o =$ Ouartz sleeve diameter UV density == D D. = UV density per lamp Base of natural logarithms e = Extinction coefficient e = Dispersion coefficient E = Energy loss factor, lamp output $\mathbf{F}_{\mathbf{p}} = \mathbf{I}$ Energy loss factor, transmission F. = Depth of water h = Light intensity I =Lamp surface intensity $I_o =$ Measured intensity at distance d $I_1 =$ Intensity of transmitted light $I_t =$ Rate of bacterial inactivation K =Path length $L_0 =$ Particulate density coefficient m = Microwatts uw = nm = Nanometer Bacterial density remaining after UV exposure N =Initial bacterial density $N_0 =$ Bacterial density associated with particulates $N_{p} =$ unaffected by exposure to UV radiation. Total flowrate Q === Reynolds number $R_c =$ $R_h =$ Hydraulic radius $\delta^2 =$ Statistical variance $\delta_{\rm m}^2 =$ Dimensionless variance Centerline spacing s = Centerline spacing, vertical S, = Centerline spacing, horizontal S, = Theoretical residence time T = Mean residence time $T_m =$ Transmission at a 253.7 nm wavelength $T_r =$ Exposure time t, = **t**_p = Time to peak Time for 10% of tracer to pass t10 ==

Time for 50% of tracer to pass
Time for 90% of tracer to pass
Velocity of wastewater traveling the reactor **t**₅₀ ton

u

V_v = Void volume of water in reactor

 $\mathbf{W}_{\mathbf{n}}$

Energy output per lamp Characteristic length of the reactor x